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2. Inverse problem basics 

2.1  Parameter and model space 

Let a model within scope of the Geoscience problems be denoted )(mφ with 

control parameters , where  is a set of physical quantities.  For each choice of 

parameter values (quantitative specification of the parameters in ) there is different 

realization or simulation with 

m m

m

φ . The space or manifold spanned by the different values 

of  is called parameter space. The parameter space is populated with possible values 

of the parameters. The quantitative results of 

m

φ  for different choices of the parameter 

values also span a space or manifold, called the model space. The existence of space of 

φ  is interpreted as the existence of different possible simulations of measurements by the 

model which represents the same governing laws.  

There are two possible distinct causes of the existence of parameter space. First, 

the parameter values are characterized with errors around some known reference set of 
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values. Second, the different parameter values are result of variability by natural causes 

of the physical system which is modeled by φ  in the domain of characterization by the 

control parameters. This implies that the governing laws are well known but the 

processes which determine quantification of the parameters are not.  These two 

interpretations and the consequence of them are illustrated in the following example 

 

Example 1.1: Damped oscillations 

 

The phenomenon of interest is evolution of displacements of a mass from 

equilibrium points under the influence of a potential field or elasticity force and a 

dissipation force. The simplest physical model of this kind is a mass on a spring as in 

Figure 1.1   

 

 

 

 

Figure 1.1: Mass on a spring 

 

The governing equation for evolution of the displacement over time is written 
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where χ  is the displacement from the equilibrium point (also called oscillation 

amplitude), τ is time, α is damping coefficient which represents dissipative force such as 

friction and air resistance  and ω  is spring elasticity coefficient which determines 
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frequency of oscillations.  The equation for the model in Figure 1.1 is derived directly 

from application of the Second Newton’s law and the Hooke’s  law (1676) to which the 

dissipation force is added. 

          The oscillator model approximates many natural systems that vibrate or oscillate. 

In general it is used to represent governing equations for a particle moving through any 

region whose potential has one or more local minima: pendulum, planetary and satellite 

motion, the classical description of an electron in orbit around a nucleus and an air 

parcel in geopotential field, to mention some.   The solution of (1.1) is readily obtained 
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The damped oscillation solution depends on two initial conditions (arbitrary 

starting time with 0=τ ), and values of α and ω . These are the control parameters in 

the model (1.1). There are many, in fact infinite, possible values which could be assigned 

to the control parameters. Samples of the solution (1.2) are shown in Figure 1.2. The 

figure illustrates that varying of the initial conditions causes change in the amplitude of 

χ  but not frequency, while the variability of α and ω  results in the change of both the 

amplitude and frequency. Obviously, in the asymptotic limit ∞→τ , the solution is the 

state at rest ( 0=χ ), implying that any values in the set ],,,[ 21 ΑΑωα  would produce 

very similar quantification of the state in the long time limit.  
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Figure 1.1 Sample of solution (1.2) for different control parameter values 

 

The interest is typically in the oscillation amplitudes at  arbitrary but finite times, 

as would be in many other problems where an evolving natural system is modeled. A 

choice of the reference values of  ],,,[ 21 ΑΑωα  with errors implies that the forces and 

initial conditions are pretty much known. The example of oscillator model space spanned 

by simulations from the parameter space with small errors around the reference is shown 

in Figure 1.2-A. Second choice is the parameter space spanned by  values of α and ω  

from different elasticity of the spring or different medium which exerts the resistance. The 

range of possible values of α and ω  must be larger than in the  simulations with errors 

around the reference. The resulting model space is shown in Figure 1.2-B. Comparison 

indicates that the range in the model space  increases with increasing range of the 

possible parameter values, as expected,  but the two spaces are not very different in the 

mean at early times (panels a and d).  The model simulations at larger times show 

tendency to cluster closer to zero for the simulations shown in 1.2-B, indicating that there 

are many combinations of α and ω   values which result in the similar small values in the  

model space.  This example shows that the model space is not uniquely defined by the 

 4



origin of parameter space, consistent with common wisdom that there are potentially 

many possible causes resulting in the  same  measurable quantity.  

 

 

Figure 1.2 Histogram of simulated oscillation amplitudes at 3 time points (left to right) which resulted  from 

parameter space of α and ω  with: A – small range ,  and B -  large rang. t 

 

 

2.2 Measurement space 

 

The measurement space is simpler to define than the parameter space. It is the 

space spanned by possible values of the measured quantity within the uncertainty range 

of the measuring procedure. The measuring procedure could include multiple 

measurements of the same quantity or  multiple measurements of different quantities but 
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for the same realization of the natural system. In the latter case the measurements 

constitute a multidimensional space similar to the control parameter set. In the oscillator 

model (1.1) there is only one dimensional phase space represented by χ . The measurable 

quantity in this example is  )( iτχ , where iτ  is discrete time. 

In the inverse problem there is explicitly derived dependency of the parameter to 

measurement uncertainty which is presented in the next section. Here the interest is to 

discuss the consequence of  existence of the measurement space spanned by the 

measurement uncertainties. The range of control parameter values which would result 

from the measurement uncertainty is interpreted as in the forward problem as the range of 

uncertainty on the parameters. This property emphasizes the critical property of the 

modelization of the natural systems: When it is necessary to solve the inverse problem in 

the process of understanding and modeling of the natural system, the uncertainties in 

the measurements would render the uncertainties in estimates of what controls the 

system as hypothesized by the system model.  

 

           The parameter space which results from the variable external causes leading to the 

variable parameter values is related to the measurement space in more complex way than 

the measurement uncertainties. Each individual measurement is a recorded quantity of a 

response of an instrument to the medium that is measured. The medium when measured 

is at one specific state after one realization of the possible external cause. In order to 

capture natural variability of the parameters in the inverse problem solution which is 

caused by conditions external to the model, it is necessary to evaluate it from many 

measurements and different state realizations. It is shown later that validity of an 
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evaluated range of actual variability in the inverse problem solution would depend on 

three factors:  1) abundance of measurements, 2) size of measurement errors and 3) 

strength of sensitivity of the forward model to the control parameters.  Analysis of impact 

of each of these factors is important subject in specific applications as it addresses 

potential to distinguish different causes of the natural phenomena by the specific model 

and available measurements. 

 

2.3 Probabilistic nature of information in the inverse problem 

 

The property of measurements to always have errors makes them random 

quantities. Consequently, the model control parameters which would be derived from the 

inverse problem solution using the measurements would also be random quantities.  Even 

without the inverse problem the model control parameters could be random quantities if 

their values are uncertain. The random quantity, also called the stochastic quantity, is a 

quantity which exact value is not known or predictable. What is known about the random 

quantity is a possible value from a range with an associated probability. Because the 

measurements and control parameters are by design the stochastic quantities, 

relationships between these quantities in the inverse modeling problem and applications 

in the data assimilation problems must be derived based on the relationship between the 

associated probabilities.  
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2.3.1 Interpretation of probability 

 

          First,  let A  be realization of a stochastic physical quantity with the numerical 

value from within an interval ),( dxxx + . If  there are many realizations of A , it would 

be  possible to derive probability of A  as chance of occurrence of A . A  is then an event 

with probability  for which the following classical axioms of probability apply )(AP
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                                                                                 (1.3) 

 

If A  and B are disjoint events  

 

)()()( BPAPBAP +=∪                                                                     (1.4) 

 

If A  and B are not disjoint events  

 

)()()()( BAPBPAPBAP ∩−+=∪                                                 (1.5) 

 

where is joint probability  )( BAP ∩

 

A distribution of probabilities over the space of possible values of A  defines the 

probability distribution on that space. Another important function associated with the 
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stochastic quantity and its probability distribution is the probability density  which 

satisfies   

)(xp

∫=
A

dxxpAP )()(                                                                                   (1.6) 

where x  represents coordinates, indicating that in the general case, the event A  is a set 

of physical quantities included in A, such as the set of control parameters or set of 

measurements.  The probability density function is of critical importance in the 

description of the stochastic quantities because when it is known they are completely 

described. 

               There is another intuitive way to interpret the probability of stochastic physical 

quantity in the inverse modeling problem. The probability could be defined as in 

Tarantola (2005) as : “ subjective degree of knowledge of the true value”. It is somewhat 

difficult to understand the emphasis on subjective knowledge in the Tranatola’s 

definition, but it is instructive to consider the interpretation of probability which uses the 

reference to the truth. In this approach the uncertainty or error which renders the physical 

quantities stochastic is measured as deviation from the truth. It is shown later that even 

when the truth is not known, which is most of the time, the uncertainty defined as 

deviation from the truth could be sensible approach to interpreting the probability in the 

results of the inverse modeling problems. The probabilistic variables and relationships 

(1.3 – 1.6) are the same for either interpretation of the probability. 
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2.4  General inverse problem and solution 

 

2.4.1 Conditional probability 

 

The key relationship which links the probabilities of stochastic quantities  in the problem 

of  evaluating the control parameters by inversion from the measurements is most 

commonly expressed by the Bayes’ rule (1763) for conditional probabilities.   

 

)(
)()/()/(

AP
BPBAPABP =                                                                             (1.7) 

 

where A  and B are statistical events. The rule is actually derived from the definition of 

conditional probability  

 

)(
)()/(

BP
BAPBAP ∩

=                                                                                     (1.8) 

 

The left hand side is red as “probability of A given B”. From the definition  it follows 
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.                                                                            (1.9) 

The Baye’s rule is then readily derived 

                                                                                  

 10



Assuming that the event B is from the control parameter space and A  from the 

measurement space,  then the rule (1.7) is red as: 

“Conditional probability of  the parameter taking values defined by the event B 

conditioned on the measurement taking values as defined by the event A  is equal to 

product of  conditional probability of  the measurement taking values defined by the event 

A  conditioned on the parameter  taking values as defined by the event B  and  probability 

of the parameter taking the values as defined by the event B, normalized by probability of 

the  measurement taking values as defined by the event A 

 

             This relationship apparently allows to evaluate probability of the parameter (as 

defined by B ) given the measurements (as defined by A) assuming that right hand side 

(r.h.s.) of (1.7) is known. The probabilities ,  and  are hard to 

evaluate when based on the occurrence of events approach. It is far more convenient  to 

assume probability distributions associated with the space to which the events A and B 

belong (i.e., the measurement and parameter spaces, respectively). As the distribution is 

determined by the probability density (1.6), the problem is then transformed to finding a  

)/( BAP )(AP )(BP

relationship between the probability densities on the joint parameter and measurement 

spaces. To arrive at the relationship which relates the probability densities instead of the 

probabilities of individual events we take the approach from Tarantola (2005) of  

defining  the probability densities in the joint spaces of the parameters and measurements 

and their conjuction . 
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           It is possible but not necessary to derive the desired relationship between the 

probability densities as generalization of the Bayes’ rule (1.7). This approach is taken in 

the literature on estimation and stochasting filtering theory which addresses the inference 

of state of modeled time evolving systems from discrete stochastic measurements 

(Jazwinski, 1970; Sorenson, 1985). In the applications in the Geoscience problem 

examples of the use of equivalent to the Bayes’ rule for probabilities is described in Cohn 

(1997), Rodgers (2000), …… (more references).   In the stochastic filtering theory 

literature the generalization of the Bayes’ rule is derived  by a limiting process in the joint 

space of the measurements and modeled state (Jazwinski, 1970). It is beyond the scope of 

this text to present the theoretical derivation and indebt analysis of the use of conditional 

instead of the joint posterior probability density functions. In the present chapter the 

approach from Tarantola (2005) is adapted for easy interpretation of the origin of 

probability density functions on the parameter and measurement spaces which apply 

within wide scope of the Geoscience problems where the parameters and models of many  

kinds are used to analyze and predict the state in conjunction with vast variety of 

measurements.      

 

2.4.2 Conjuction of probability distributions 

 

It is shown in section 2.1 that there are two sources of information about the natural 

system under study. These are the modeled and measured information.  Let parameter 

space be denoted M , spanned by points . This space is transformed into a  

measurement space by a forward model  

,....),( 21 mm
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)(md φ=                                                                                                         (1.10) 

In the damped oscillator example φ is represented by equation (1.1). Let the measurement 

space as simulated by the model be denoted Ο . Ο  is spanned by points . The 

joint space 

,....),( 21 dd

Ο×=Ω M , which is characterized by a joint probability density , is 

the space of all possible information available about a natural system under study,  given 

the model. The joint probability density on 

),( dmf

Ω  provides complete description of the 

uncertainties and natural variability in the parameters and the result of these by the model 

simulations which is contained in the space Ο . The joint probability density  

could also include effects of  modeling errors. The modeling errors would result from the 

use of imperfect model. For example, the damped oscillator model (1.1) may be used to 

simulate damped oscillations  which are in reality also driven by some unknown external 

harmonic force. When the force is not included in the equation, the model would be in 

error relative to the actual natural system and consequently relative to the  measurements. 

It is not trivial task to design or assume the effect of modeling errors when specifying the 

joint probability density . This problem is illustrated in the exercises ?? . 

),( dmf

),( dmf

 

              The other information about the natural system is contained in the actual 

measurements which are independent of the model. Let this information be in space 

denoted . There is  a joint probability density on the joint space C MC ×=Θ , denoted 

),( dmρ . Notice that ),(),( dmfdm ≠ρ .  The union of measurement spaces Ο and 

defines total measurement space which is denoted . The joint probability densities 

 and 

C D

),( dmf ),( dmρ  are both defined on . New information about the system would D
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be obtained when the two joint probability densities  are  combined by conjuction  

(Tarantola, 2005, chapter 1.5) 

 

),(
),(),(1),(

dm
dmfdmdmp

ν
ρ

γ
=                                                             (1.11) 

 

Where ∫ ×
=

MD dm
dmfdm

),(
),(),(

ν
ργ   is constant and ν is so called homogenous probability 

density.  is a posteriori probability density on the joint space ),( dmp MD × resulting 

from the combined probability distributions.  The knowledge of  a posteriori probability 

density is the most complete available quantitative knowledge of information about the 

natural system under study. By this property, the expression (1.11) defines the general 

inverse modeling problem:  

 

Evaluate  from knowledge of ),( dmp ),( dmρ ,  and ),( dmf ),( dmν .  

 

  contains all available quantitative information of the system in the space ),( dmp

DM ×  from which solution of the inverse modeling problem is to be derived. To arrive 

at the resolution we need to introduce definitions of marginal and conditional probability 

densities and a priori information.   

             The marginal probability densities for any joint space with the associated joint 

distribution  in the space spanned by points are   ),( bag ,.....),,.....,,( 2121 bbaa
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),()(

),()(
                                                                             (1.12) 

When the space  is independent of  then  ,.....),( 21 aa ,.....),( 21 bb

)()(),( bgagbag BA=                                                                              (1.13) 

The conditional probability density is defined   

)(
),()/(/ bg

bagbag
B

BA =                                                                                     (1.14) 

         The conditional probability density is interpreted as the probability density of points 

in the joint space for which . Using (1.14) the joint probability density for the 

information given the model is  

)(abb =

 

)()/(),( mmdfdmf ν=                                                                               (1.15) 

 

where the marginal probability density in the parameter space is assumed to be equal to 

the homogenous probability density of the parameters.  The conditional probability 

density   is made of the results of forward model applied over a space of control 

parameters without knowledge of the measurements. In figure 1.2 the discrete 

examples of this probability density are shown for the damped oscillator model. 

)/( mdf

 

         The probability density ),( dmρ  results from the information in the joint space of 

the control parameters and measurements without knowledge of the model. It is natural to 

assume that these are independent. From (1.13)  
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)()(),( dmdm DM ρρρ =                                                                         (1.16) 

 

The probability density )(dDρ  results exclusively from information about the 

uncertainties in the measurements. The  probability density )(mMρ  in turn results from 

information of the uncertainties or variability in the control parameters which is 

independent of the measurements. This information is called a priori.  

 

Under the same assumption as in (1.16)  the homogenous probability density in (1.11) is 

 

)()(),( dmdm DM ννν =                                                                           (1.17) 

 

Substituting (1.15-1.17)  into (1.11) renders 

 

)(
)/()()(1),(

d
mdfmddmp

D

MD

ν
ρρ

γ
=                                                         (1.18) 

 

The solution of the general problem (1.18) is to compute the marginal probability density 

for the control parameter space. Using  (1.18)  in  (1.12) 

 

Dd
d

mdfmdmp
D

D

MD
M ∫= )(

)/()()(1)(
ν
ρρ

γ
                                                     (1.19) 
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(Tarantola, 2005). is interpreted as projection onto )(mpM Μ . The probability densities 

on the r.h.s. of (1.19) are assumed known for the specific application. Geosciences and 

other physical sciences where parameters and models of many kinds are used to analyze 

and predict the state in conjunction with vast variety of measurements.      

 

         In the present definition of the joint space DM ×  with the associated joint 

probability density , the conditional probability density in for the parameter 

space could be derived from application of  (1.14) assuming existence of  . 

This assumption is somewhat difficult to interpret in the general case in which the 

parameter space is not the same as the modeled system state as in the stochastic filtering 

theory. When the assumption is valid it implies 

),( dmp

)(dmm =

 

)()/(),( dpdmpdmp D=                                                           (1.20) 

 

Combining (1.18) and (1.20)  

)()(
)/()()(1)/(

dpd
mdfdmdmp

DD

DM

ν
ρρ

γ
=                                                      (1.21) 

 

            This expression implies that the conditional probability density of parameters 

conditioned on the measurements is obtainable from the independent information about 

quantities in the space of measurements and parameters. The posterior probability 

densities in (1.19) and (1.21) are apparently different, but in either case the required 

knowledge about the independent stochastic information in the parameter and 
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measurements spaces is the same.  Before addressing common choices in general and 

more specifically in the examples in chapters 4 and 5 it is instructive to consider what 

type of information may be most useful or interesting to derive from the knowledge of 

posterior probability density function.  

 

2.4.3 Estimation criteria 

 

            In the practice with the Geoscience problems the parameter space is often large 

multidimensional space. In this situation it is unfeasible to either evaluate or visualize 

(1.19) or (1.22).  Instead, characteristics of the posterior probability density function are 

used to define single best estimate or central estimate of the parameters (Cohn, 1997, 

Jazwinski 1970; Tarantola, 2005). The commonly used central estimation criteria  are   

a) Maximum likelihood,  define by a discrete region or continuous point 

with maximum probability associated with the posterior probability 

density function. The likelihood function is  

∫= D
D

D dd
d

mdfdmL
)(

)/()()(
ν

ρ                                               

b) Minimum variance, defined  by the men of the posterior probability 

distribution 

∫= M M dmmmpm )(  or conditional mean ∫= M
dmdmmpm )/(  

c) Minimum absolute distance, defined by the median of the posterior 

density distribution 
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The choice of criterion would depend on the purpose of estimation and characteristics of 

the specific problem. For example, ……………… 

  

2.4.4 Conjuction of Gaussian distributions 

 

           It is common to assume that probability density functions associated with model 

and measurement spaces are Gaussian. The Gaussian distribution is characterized with 

only two statistical parameters: mean x and covariance  C

⎟
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In the model space (1.23) is 
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while in the measurement space 

⎟
⎠
⎞
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⎝
⎛ −−−= − ))()(
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1)( 1

2
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T
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d

D ddCdd
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d
π

ρ                             (1.25) 

 

Using (1.24) and (1.25) in (1.19)  

⎟
⎠
⎞

⎜
⎝
⎛ −−−= − ))(())((

2
1exp)()( 1

measD
T

measMM dmCdmmkmp φφρ                           (1.26) 

Where  denotes actual measurements, is cumulative constant and  measd k

SdD CCC +=                                                                                                    (1.27) 
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(1.26) indicates that the conjuction of two Gaussian probability distributions in the 

measurement space  is also Gaussian  with the summed up uncertainties from the 

independent modeled and measured information, represented by the covariance  

Problem 1: Derive 1.27 (Appendix) 

DC

When it is further assumed that the a priori probability density function in the parameter 

space is Gaussian 
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⎞
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M mmCmm
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ρ                       (1.28) 

then  
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          (1.29) 

 

)(mS  is apparently weighted sum of squares. When the model is linear Fmm ≡)(φ ,  then 

in (1.29) becomes Gaussian with the mean and covariance, respectively  )(mpM
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FmdCFFCFCmm
                                     (1.30) 

Problem 2: Derive 130 (Appendix) 

                

                  In the section on Kalman Filter technique (3.2) it is shown that solution (1.30) 

is also derived for the data assimilation problem by the stochasting filtering theory which 
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addresses the inference of state of modeled time evolving systems from discrete 

stochastic measurements (Jazwinski, 1970). This theory is applicable in the Atmospheric 

sciences and Oceanography when the interest is to produce quantification of the 

atmospheric or oceanic state in geographical discretized space and over time (Cohn, 

1997; Kalnay 2000).   

 

           Application of the maximum likelihood criterion for the central estimate by (1.29) 

implies minimization of . The minimization of  is commonly referred to as 

“least square problem” which is treated in the chapter on Variational techniques (3.3). 

)(mS )(mS
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